

Biochimica et Biophysica Acta 1410 (1999) 229-236



# Expression of the ADP/ATP carrier encoding genes in aerobic yeasts; phenotype of an ADP/ATP carrier deletion mutant of Schizosaccharomyces pombe

Véronique Trézéguet <sup>a,\*</sup>, Igor Zeman <sup>b</sup>, Claudine David <sup>a</sup>, Guy J.-M. Lauquin <sup>a</sup>, Jordan Kolarov <sup>b</sup>

- <sup>a</sup> Institut de Biochimie et Génétique Cellulaires, Laboratoire de Physiologie Moléculaire et Cellulaire, IBGC-CNRS, 1, rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
- <sup>b</sup> Department of Biochemistry, Faculty of Sciences, Comenius University, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia

Received 7 October 1998; received in revised form 14 December 1998; accepted 18 December 1998

#### Abstract

The expression of a key mitochondrial membrane component, the ADP/ATP carrier, was investigated in two aerobic yeast species, *Khuyveromyces lactis* and *Schizosaccharomyces pombe*. Although the two species differ very much in their respiratory capacity, the expression of the carrier in both yeast species was decreased under partially anaerobic conditions and was induced by nonfermentable carbon sources. The single ADP/ATP carrier encoding gene was deleted in *S. pombe*. The null mutant exhibits impaired growth properties, especially when cultivated at reduced oxygen tension, and is unable to grow on a nonfermentable carbon source. Our results suggest that the inability of *K. lactis* and *S. pombe* to grow under anaerobic conditions can be related in part to the absence of a functional ADP/ATP carrier due to repression of the corresponding gene expression. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: ADP/ATP carrier; Gene expression; Null mutant; (Kluyveromyces lactis); (Schizosaccharomyces pombe)

#### 1. Introduction

The ADP/ATP carrier (Aacp or Ancp) of the inner mitochondrial membrane has entered into the focus of recent investigations because it affords a suitable model for elucidation of membrane transport phenomena [1,2] and because it could be intimately involved in cell growth control [3,4] and in programmed cell death [5]. In vivo, under aerobic

conditions, the Aacp exchanges cytoplasmic ADP for intramitochondrially synthesized ATP, thus controlling the rate of oxidative phosphorylation together with the phosphate carrier and the ATP synthase. In contrast, under anaerobic conditions or in respiration-deficient mutants of yeast, the oxidative phosphorylation is not functional and the carrier works in the opposite direction, providing the glycolytically made ATP to mitochondria. In the mean time, due to the electrogenic character of the ADP/ATP exchange, it can create a membrane potential across the inner mitochondrial membrane. Previous work employing ADP/ATP translocator mutants of *Saccharomyces cerevisiae* demonstrated that the intrami-

0005-2728/99/\$ – see front matter © 1999 Elsevier Science B.V. All rights reserved. PII: S 0 0 0 5 - 2 7 2 8 ( 9 8 ) 0 0 1 8 0 - 7

<sup>\*</sup> Corresponding author. Fax: +33 556-999059; E-mail: vero.trezeguet@ibgc.u-bordeaux2.fr

tochondrial ATP and/or mitochondrial membrane potential are required for growth [3,4,6].

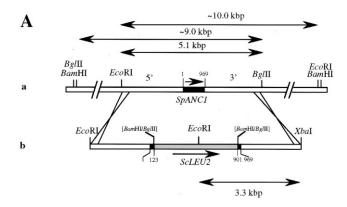
In *S. cerevisiae*, the ADP/ATP carrier is encoded by three distinct genes, *AAC1*, *AAC2*, and *AAC3*, which are all functional [7]. It has been shown that they are all regulated by oxygen which in the case of *AAC2* and *AAC3* exerts its effect through heme [8,9]. Transcription of *AAC1* is also affected by oxygen, but in a heme-independent manner [10]. Under low oxygen tension, expression of *AAC2* is strongly repressed, whereas transcription of *AAC3* is derepressed several times [8–10]. It was previously demonstrated that deletion of *AAC2* and *AAC3* produced mutant cells unable to grow under anaerobiosis [7].

Under normal growth conditions, AAC2 is the main expressed isoform and negative mutations in this gene yield cells unable to form petite (p<sup>-</sup>) mutants [3,7], thus resembling petite-negative yeast strains, such as Kluyveromyces lactis and Schizosaccharomyces pombe [11]. These two species, although possessing high fermentative capacity, are unable to grow under strict anaerobic conditions [12]. With respect to the ADP/ATP carrier, K. lactis and S. pombe differ from S. cerevisiae, as they most probably have only one carrier encoding gene within their genomes [13,14]. The effect of oxygen on AAC gene expression in S. cerevisiae, as well as growth phenotype of aac mutants [6–10], suggests that insufficient ATP/ADP carrier function might become critical for the ability of aerobic yeast species to grow under reduced oxygen tension. To test this possibility, we have investigated the effect of oxygen on the expression of the ADP/ATP carrier encoding genes in the two most commonly used aerobic yeasts, S. pombe and K. lactis. In addition, we constructed an ancl $\Delta$ S. pombe mutant, and we will describe some of its properties.

#### 2. Materials and methods

## 2.1. Yeast strains and growth conditions

K. lactis strain JBD100 (trp1, lac4-1, ura3-100) was provided by H.Y. Steensma (Kluyver Laboratory, University of Technology, Delft). The mutant Klhap2 strain MW270-7B/16 (MATa, uraA, leu2, metA1,


hap2 :: URA3) and the corresponding parent wild-type, MW270-7B, were provided by M. Bolotin-Fukuhara (Institut de Génétique et Microbiologie, Paris). S. pombe wild type strain was  $h^-$  972. Disruption of the ANC1 gene was made in MR1 ( $h^-$ , ura4-D18, leu1-32) (from Michel Rochet, Institut National Agronomique, Thivernal Grignon, France).

The parental *S. cerevisiae* strain and its cognate mutants containing deletions in *AAC* genes were previously described [7,15].

The *S. cerevisiae* and *K. lactis* cells were grown aerobically at 30°C in 1% yeast extract, 2% bactopeptone (YP) supplemented with the indicated carbon source. For cultivation of *S. pombe*, the bactopeptone was omitted and the yeast extract was lowered to 0.5% [16]. The anaerobic cultivation was performed in anaerobic jars using Anaerocult A system (Merck) as previously described [7,9]. The growth media for anaerobic growth were supplemented with 12 μg/ml ergosterol and 0.2% Tween 80. Semianaerobic conditions were achieved by static cultivation in small flasks tightly closed and filled up to the top with growth medium.

#### 2.2. Disruption of SpANC1 gene in S. pombe

791 bp of the SpANC1 open reading frame (969 bp) were deleted and replaced with the S. cerevisiae LEU2 gene. In a first round of experiments, ANC1 noncoding regions were amplified using PCR starting from plasmid pRS306-5.1 [14]. The following sets of primers were used: KS (5'-TCGAGGTCGACGG-TATC-3') (Stratagene) and 1235'-GCGGTTTTgGATCCAGCAGCAG-3'110 to amplify the 5' noncoding region and SK (5'-CGCTCTAGAACTAG-TGGATC-3') (Stratagene) and 9015'-GTTGCTGG-AtCcGGTGTCCTTTCC-3'924 to amplify the 3' noncoding region. These primers allowed to introduce a BamHI site (underlined) at one end of each fragment. The 5' fragment (2.1 kb) generated by digestion with BamHI and EcoRI was cloned into the corresponding restriction sites of phagemid pRS306, then the 3' fragment (2.0 kb) was cloned into the relevant sites after digestion with BamHI and XbaI. The recombinant plasmid was linearized with BamHI to introduce a BglII fragment (2.8 kb) derived from plasmid CV9 [17] and containing the S. cerevisiae LEU2 gene, which is able to complement a LEU1



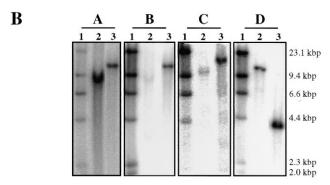



Fig. 1. Southern blot analysis of the *ANC1* gene disruption in *S. pombe*. (A) Schematic representation of the homologous recombination at the *ANC1* locus. (a) Chromosomal *ANC1* locus. (b) *Eco*RI-*Xba*I DNA fragment bearing the *LEU2*-disrupted *ANC1* locus. (B) Genomic DNA was prepared either from the parental strain (lanes 2) or from the *Spanc1* mutant cells (lanes 3). After digestion with *Bam*HI (A and B) or *BgI*II (C) or *Eco*RI (D) genomic DNAs were probed either with a *BgI*II fragment containing the *S. cerevisiae LEU2* gene (B) or a *Bam*-HI-*Xba*I fragment corresponding to the 3' noncoding region of *SpANC1*. Lanes 1: *Lambda* phage DNA digested with *Hind*III and probed with itself.

defect in *S. pombe*. The final plasmid contained the *LEU2* gene bordered by the 5' and the 3' *ANC1* noncoding sequences on a 6.9-kb fragment, which was isolated by *Eco*RI and *Xba*I digests then used to transform MR1 strain. The transformants were selected for their ability to grow on a complete minimal medium deprived of leucine. Deletion of the *ANC1* gene was confirmed by Southern blot hybridization (Fig. 1).

#### 2.3. Miscellaneous methods

Isolation of plasmid DNA, preparation of probes for hybridization, isolation of total RNA, blotting and hybridization were carried out as described in [18]. The probes for hybridization were: a 1.2-kb *BanII/DraI* fragment of *S. cerevisiae AAC2* gene, a 0.9-kb *Hin*dIII fragment of *S. pombe SpANC1* gene, and a 0.6-kb *BamHI* fragment of *S. cerevisiae ACT1* gene.

#### 3. Results

# 3.1. The KlAAC transcript

K. lactis is an aerobic, respiratory, petite-negative yeast species in which the mitochondrial ADP/ATP carrier is most probably encoded by a single nuclear gene, KlAAC. It is 84.4% identical, at the DNA level, with AAC2, the major carrier encoding gene in S. cerevisiae [13]. Northern blot hybridization analyses of total RNA from K. lactis show that transcription

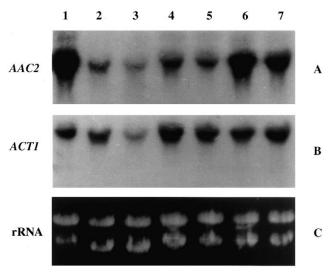



Fig. 2. Effect of various growth conditions of *K. lactis* cells on transcription of the ADP/ATP carrier encoding gene (*KlAAC*). Cells were grown in YPD medium under aerobic (lane 2) or semianaerobic (lane 3) conditions, as described in Section 2. Total RNA (20 μg in each lane) was isolated either from cells continuously grown in 2% glucose (lanes 2 and 3), or from cells grown overnight in 2% glucose and then shifted for 4 h to 2% glucose with (lane 5) or without 12 μg/ml hemin (lane 4). Cells were shifted for 4 h to YP medium supplemented with either 2% lactate (lane 6), or 3% glycerol+1% ethanol (lane 7). *S. cerevisiae AAC2* transcript is shown in lane 1. The probes used were (A) 1.2-kb *BanII-DraI* fragment of *S. cerevisiae AAC2* and (B) 0.6-kb *BamHI* fragment of *ACT1* from *S. cerevisiae*. Ribosomal RNAs stained by ethidium bromide (C) are shown to give an estimate of the amounts loaded on the gels.

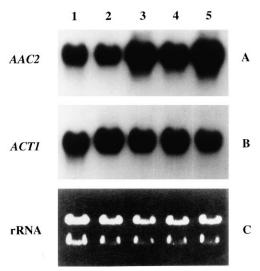



Fig. 3. Expression of *KlAAC* in the wild type strain 7B and in the *Klhap2* mutant strain 7B/16. The wild type (lanes 2 and 3) and mutant cells (lanes 4 and 5) were grown overnight in YP medium supplemented with 2% glucose and then shifted for 4 h to YP supplemented with either 2% glucose (lanes 2 and 4), or 3% glycerol+1% ethanol (lanes 3 and 5). Probes and other conditions are those described in Fig. 2.

of the *KlAAC* gene produces a transcript similar in size to that of *AAC2* transcript in *S. cerevisiae*, and that the level of *KlAAC* mRNA varies in cells depending on growth conditions. In contrast to the results reported earlier [13], derepressed conditions (Fig. 2, lanes 6 and 7) induce expression of the

KlAAC gene, as compared to the repressed conditions in the presence of glucose. The derepression ratio is smaller than that observed with AAC2 gene in S. cerevisiae [8]. This is in agreement with the results obtained by other authors [19,20], indicating that the respiratory genes that have a high repression ratio in S. cerevisiae show only a two-fold or smaller derepression ratio in K. lactis. On the other hand, semianaerobic conditions significantly reduces the level of KlAAC specific mRNA (Fig. 2, lane 2) as compared to aerobic conditions. It should be noted here, that under semianaerobic conditions the K. lactis were still able to grow on glucose, although with a reduced rate (not shown).

The effect of oxygen on expression of *KlAAC* in *K. lactis* could be mediated through heme and thus through heme-dependent transcription factors, as it is the case for *AAC2* gene in *S. cerevisiae* [8]. This question was addressed by adding hemin to the growth media. It induced expression of nuclear encoded mitochondrial proteins in both *K. lactis* [20] and *S. cerevisiae* [9]. Therefore, the effect of heme on *KlAAC* gene expression was also tested. Our results show that addition of hemin (Fig. 2, lane 5) to *K. lactis* does not significantly change the level of *KlAAC* transcripts, with respect to nonsupplemented cells. It should be noted here that for equivalent amounts of isolated total RNA, reduced levels of

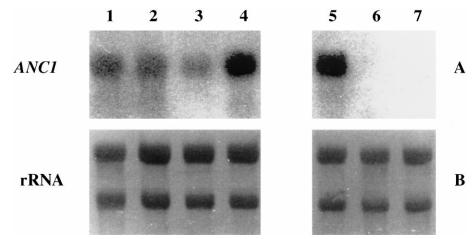
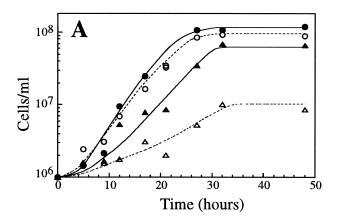



Fig. 4. Effect of carbon sources and semianaerobic conditions on the transcription of *SpANC1* in *S. pombe*. The wild type strain MR1 (lanes 1–5) and the *Spanc1* deletion mutant MR12 (lanes 6 and 7) were grown in YE medium supplemented with different carbon sources under either aerobic (lanes 1, 2, 4–6) or semianaerobic conditions (lanes 3 and 7) as described in Section 2. Total RNA was isolated from cells continuously grown in 3% glucose (lanes 1, 3 and 6), and from cells grown overnight in 3% glucose and then shifted to 8% glucose (lane 2), 3% glycerol+1% ethanol (lane 4), or 3% raffinose (lane 5). Ribosomal RNAs were estimated after methylene blue staining.

the control actin mRNA were observed in *K. lactis* cells grown under semianaerobiosis (Fig. 2B). This disqualifies the use of actin gene as a reference in these particular conditions. Therefore, to estimate the quantity of total RNA loaded on the gels, we examined the amount of ribosomal RNAs after ethidium bromide staining (Fig. 2C).


Two sequences, RTCRYNNNNNACG and TG-ATTGGT, which are identical with the consensus sequences for recognition of respectively the ABF1 factor and the oligomeric complex HAP2/3/4/5 in S. cerevisiae, were identified in the upstream region of KlAAC gene [13]. Both factors play an important role in the regulation of genes encoding mitochondrial proteins in S. cerevisiae, including the AAC2 gene [8,19,20]. Therefore, the effect of KlHAP2 on KlAAC expression was tested. Fig. 3 demonstrates that deletion of KlHAP2 gene neither changes significantly the expression of KlAAC nor influences induction of the gene expression by nonfermentable substrate. It should be noted here that efforts were made by ourselves to inactivate KlAAC but no viable cells could be obtained. The reason for this is not clearly understood.

# 3.2. The SpANC1 transcript

S. pombe is an aerobic, fermentative, petite-negative yeast species in which the mitochondrial ADP/ ATP carrier is encoded by a single gene (SpANC1) [14]. Its expression under different growth conditions was investigated using as a probe a 0.9-kb (HindIII) <sup>32</sup>P-labeled DNA fragment encompassing two thirds of the SpANC1 coding region. Northern blot analyses show that the SpANC1 gene is transcribed to relatively low levels in cells grown in media containing either low or high concentration of glucose (Fig. 4, lanes 1 and 2). The level of SpANC1 specific mRNA is further reduced by cultivation under semianaerobic conditions (Fig. 4, lane 3). As observed with K. lactis, expression of SpANC1 gene was induced in S. pombe cells under derepressed conditions, though to a lower extent. This is documented by the high level of SpANC1 specific mRNA in cells grown in media containing either glycerol, or raffinose as carbon sources (Fig. 4, lanes 4 and 5). The successful deletion of SpANC1 (see below) is corroborated by the absence of specific hybridization when total RNA was isolated from the deletion mutant grown under either aerobic or semianaerobic conditions (Fig. 4, lanes 6 and 7). These results are consistent with previous works demonstrating the absence in *S. pombe* of another *ANC* gene induced under hypoxic conditions [14].

# 3.3. Deletion of SpANC1 gene and phenotype of the null mutant

The ADP/ATP carrier encoding gene was deleted



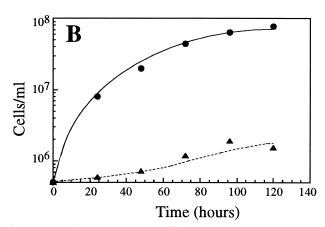



Fig. 5. Growth of *S. pombe* wild type and *Spanc1* $\Delta$  mutant under aerobic and semianaerobic conditions. The wild type *S. pombe* MR1 ( $\bullet$ ,  $\bigcirc$ ) and *Spanc1* $\Delta$  mutant ( $\blacktriangle$ ,  $\triangle$ ) grown in YE medium supplemented with 3% glucose, were inoculated (A) to  $10^6$  cells/ml into rich medium supplemented with either 3% glucose ( $\bullet$ ,  $\blacktriangle$ ) or 3% raffinose ( $\bigcirc$ ,  $\triangle$ ) and cultivated aerobically with vigorous shaking. (B) The wild type and the mutant were inoculated to  $5\times10^5$  cells/ml into bottles filled up to the top with YE medium and incubated without shaking. Bottles were sequentially opened at the time indicated and the cells were counted.

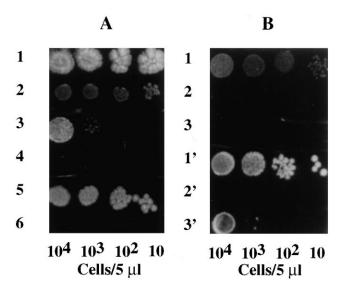



Fig. 6. Growth of *S. pombe* wild type and *Spanc1* $\Delta$  mutant on solid media supplemented with different carbon sources. (A) The wild type (1, 3 and 5) and mutant (2, 4 and 6) cells were first grown in YE with 3% glucose and 5  $\mu$ l aliquots of serial dilutions were spotted on YE with 3% glucose (1 and 2), 3% glycerol+1% ethanol (3 and 4) or 2% raffinose (5 and 6). In (B) the wild type (1), the *Spanc1* $\Delta$  mutant (2) and the *S. cerevisiae*  $\Delta$ *aac1-3* triple mutant (3) cells were spotted on YE with 3% glucose, incubated for five days under strict anaerobiosis (1–3) and then transferred to aerobiosis (1'–3').

in *S. pombe*, as described in Section 2. Surprisingly, although *S. pombe* is a petite-negative yeast species, the *S. pombe* mutant cells, in which the *SpANC1* gene is deleted, are still viable though their growth properties are impaired.

In glucose-containing liquid medium and under aerobic conditions, the Spanc1 mutant cells grew at a rate comparable to that of the corresponding wildtype strain. However, the former cells grew slower and present lower growth yield in raffinose-containing liquid medium (Fig. 5A). As expected, they could not grow on nonfermentable carbon sources (not shown). Wild type S. pombe cells could still grow under semianaerobic conditions, but deletion of the ADP/ATP carrier encoding gene considerably affected growth rate in glucose-containing medium (Fig. 5B). This deletion also prevented growth on glucose-containing medium supplemented with antimycin A. Cells were dead after a 24-h incubation and unable to recover after removing antimycin A from the culture medium (not shown).

Growth defects of the *Spanc1* null mutant were even more prominent on solid media (Fig. 6). Alike

true petite yeasts, the mutant cells form small colonies on glucose plates and do not grow on solid medium containing either glycerol plus ethanol or raffinose (Fig. 6A). Furthermore, an interesting phenotype was observed when the cells were kept under tighter anaerobic conditions (anaerobic jars). Indeed, both the wild type *S. pombe* and the *S. cerevisiae* triple deletion mutant, JLY1-3 (\(\Delta aac1-3\)), were able to recover after oxygen is supplied again while the *S. pombe* mutant cells were evidently dead (Fig. 6B).

#### 4. Discussion

K. lactis and S. pombe are two petite-negative yeast species which differ very much in their respiratory capacity ( $Q_{O_2} = 134$  and 10 µl/h/mg d.w., respectively [12]) but both are known to strongly ferment glucose ( $Q_{CO_2} = 185$  and 404 µl/h/mg d.w., respectively [12]) and to require the presence of oxygen for growth. As demonstrated previously by Southern blot analyses [13,14] and confirmed in this work by Northern blot analyses, both K. lactis and S. pombe have a single ADP/ATP carrier encoding gene in their genome. Results presented above demonstrate that both KlAAC and SpANC1 are inducible by growth on nonfermentable carbon sources, although not to a similar degree. On the other hand, under semianaerobic conditions their expressions are repressed in both species. The negative effect of semianaerobic conditions on the carrier encoding gene is important enough to allow us to extrapolate that under more strict anaerobic conditions, a complete absence of functional translocator, and consequently an arrest of cellular growth, can take place.

It was recently demonstrated that expression of the *K. lactis* genes related to mitochondrial functions can be induced by heme as it is the case in *S. cerevisiae* [21]. It was also shown that the 5-aminolevulinate synthase encoding gene in *K. lactis* (*KlHEM1*) is induced under reduced oxygen tension [22]. Both findings suggest that *K. lactis* cells own regulatory mechanisms similar to those of *S. cerevisiae* in order to respond at the gene level to heme as well as to anaerobiosis. Yet, they show that aerobic respiratory yeast possess within their genomes hypoxic genes which are induced under low oxygen tension. Our results demonstrate that the level of *KlAAC* specific

mRNA responds neither to heme addition nor to mutated Klhap2 factor. They also show that KlAAC is negatively regulated by the absence of oxygen, suggesting that KlAAC regulation resembles rather that of AAC1 than that of AAC2 in S. cerevisiae [8,10]. It was previously shown that AAC1 encodes a minor isoform of the ADP/ATP carrier and that its expression is almost completely switched off by anaerobiosis or in respiratory-deficient mutants [10]. This is achieved in an heme-independent manner in contrast to what is observed with AAC2. Accordingly, S. cerevisiae double deletion mutant ( $\Delta aac2$ ,  $\Delta aac3$ ), in spite of an intact AAC1 gene, does not grow under anaerobic conditions and does not form viable petite  $(\rho^{-})$  mutants [15]. K. lactis cells also present this phenotype.

The role of heme in *SpANC1* regulation was not investigated in this paper. We used another approach and, indeed, we succeeded in deleting the *SpANC1* gene and in preparing an oxidative phosphorylation-deficient mutant of a petite-negative yeast. To our knowledge, this is the second example of a null *S. pombe* mutant of a nuclear encoded mitochondrial component [23] and we anticipate that the *Spanc1* mutant will be a useful host to study the expression of heterologous ADP/ATP carrier proteins, including those encoded by the human genes.

The growth phenotype of the S. pombe anc1 mutant resembles that of S. cerevisiae aac1-3 triple deletion mutant [6,15]. The Spanc1 mutant does not grow on nonfermentable carbon sources and a reduced growth on glucose-containing medium under aerobic conditions is also observed. Furthermore, it was completely inhibited in the presence of antimycin A, a respiration inhibitor, thus confirming that the essential pool of intra-mitochondrial ATP in the mutant is only maintained by respiration and not through a passive diffusion between the different cellular compartments. Interestingly, in contrast to the S. cerevisiae triple  $\triangle aac1-3$  mutant, the Spanc1 mutant does not grow on raffinose and viability of the cells is markedly affected by anaerobic cultivation. This could be accounted for by a greater sensitivity of the null mutant, as compared to the parent, to the oxidative stress induced by supplying oxygen to the anaerobic culture. Last, partial anaerobiosis inhibits growth of the mutant cells to a larger extent than it inhibits growth of the parental cells, consistent with the petite negative phenotype of *S. pombe*.

Taken together, these findings demonstrate that for fermentative aerobes such as *S. pombe* an intact mitochondrial ADP/ATP carrier is required for growth more in the presence of reduced oxygen tension than under normal aerobic conditions.

## Acknowledgements

This work was supported by Howard Hughes Medical Institute Grant 75195-547301, by grants from Slovak Scientific Grant Agency (VEGA) and from the Centre National de la Recherche Scientifique, by the Université de Bordeaux2 and by the Conseil Régional d'Aquitaine.

#### References

- [1] P.V. Vignais, M.R. Block, F. Boulay, G. Brandolin, G.J.-M. Lauquin, Molecular aspects of structure relationships in mitochondrial adenine nucleotide carrier, in: G. Bengha (Ed.), Structure and Properties of Cell Membranes, Vol. II, CRC Press, Boca Raton, FL, 1985, pp. 139–179.
- [2] M. Klingenberg, The ADP/ATP carrier in mitochondrial membrane, in: A.N. Martonosi (Ed.), The enzymes of biological membranes, Vol. 4, Plenum, New York, 1985, pp. 511–553.
- [3] J. Subík, J. Kolarov, L. Kovác, Obligatory requirement of intra-mitochondrial ATP for normal functioning of the eucaryotic cell, Biochem. Biophys. Res. Commun. 49 (1972) 192–198.
- [4] Y. Gbelska, J. Subík, A. Svoboda, A. Goffeau, L. Kovác, Intramitochondrial ATP and cell functions: Yeast cells depleted of intramitochondrial ATP lose the ability to grow and multiply, Eur. J. Biochem. 130 (1983) 281–286.
- [5] N. Zamzami, S.A. Susin, T. Marchetti, T. Hirsch, M. Castedo, G. Kroemer, Mitochondrial control of nuclear apoptosis, J. Exp. Med. 183 (1996) 1533–1544.
- [6] T. Drgon, L. Sabová, N. Nelson, J. Kolarov, ADP/ATP translocator is essential only for anaerobic growth of yeast Saccharomyces cerevisiae, FEBS Lett. 289 (1991) 159–162.
- [7] J. Kolarov, N. Kolarova, N. Nelson, A third ADP/ATP translocator gene in yeast, J. Biol. Chem. 265 (1990) 14195–14201.
- [8] S. Betina, G. Gavurníková, P. Haviernik, L. Sabová, J. Kolarov, Expression of the AAC2 gene encoding the major mitochondrial ADP/ATP carrier in Saccharomyces cerevisiae is controlled at the transcriptional level by oxygen, heme, and HAP2 factor, Eur. J. Biochem. 229 (1995) 651–657.

- [9] L. Sabová, I. Zeman, F. Supek, J. Kolarov, Transcriptional control of AAC3 gene encoding mitochondrial ADP/ATP translocator in Saccharomyces cerevisiae by oxygen, heme and ROX1 factor, Eur. J. Biochem. 213 (1993) 547–553.
- [10] G. Gavurníková, L. Sabová, I. Kissová, P. Haviernik, J. Kolarov, Transcription of the AACI gene encoding an isoform of mitochondrial ADP/ATP carrier in Saccharomyces cerevisiae is regulated by oxygen in a heme-independent manner, Eur. J. Biochem. 239 (1996) 759–763.
- [11] C.J.E.A. Bulder, Lethality of the *petite* mutation in petitenegative yeast, Antonie van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 30 (1964) 442–454.
- [12] J. Subík, J. Kolarov, L. Kovác, Anaerobic growth formation of respiration-deficient mutants of various species of yeast, FEBS Lett. 45 (1974) 263–266.
- [13] A.M. Viola, C.L. Galeotti, P. Goffrini, A. Ficarelli, I.A. Ferrero, *Kluyveromyces lactis* gene homologue to *AAC2* complements the *Saccharomyces cerevisiae op1* mutation, Curr. Genet. 27 (1995) 229–233.
- [14] N. Couzin, V. Trézéguet, A. Le Saux, G.J.-M. Lauquin, Cloning of the gene encoding the mitochondrial adenine nucleotide carrier of *Schizosaccharomyces pombe* by functional complementation in *Saccharomyces cerevisiae*, Gene 171 (1996) 113–117.
- [15] T. Drgon, L. Sabová, G. Gavurníková, J. Kolarov, Yeast ADP/ATP carrier (AAC) proteins exhibit similar enzymatic properties but their deletions produces different phenotypes, FEBS Lett. 304 (1992) 277–280.
- [16] S. Moreno, A. Klar, P. Nurse, Molecular genetic analysis of

- fission yeast *Schizosaccharomyces pombe*, Methods Enzymol. 194 (1991) 795–823.
- [17] F. Sherman, G.R. Fink, J.B. Hicks, Methods in Yeast Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1986.
- [18] J. Sambrook, E.F. Fritsch, T. Maniatis, Molecular Cloning: A Laboratory Manual, 2nd edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
- [19] W. Mulder, I.H.J.M. Scholten, L.A. Grivell, Carbon catabolite regulation of transcription of nuclear genes coding for mitochondrial proteins in the yeast *Kluyveromyces lactis*, Curr. Genet. 28 (1995) 267–273.
- [20] W. Mulder, I.H.J.M. Scholten, L.A. Grivell, Distinct transcriptional regulation of a gene coding for a mitochondrial protein in the yeast *Saccharomyces cerevisiae* and *Kluyveromyces lactis* despite similar promoter structures, Mol. Microbiol. 17 (1995) 813–824.
- [21] M.A. Freire-Picos, C.P. Hollenberg, K.D. Breunig, M.E. Cerdán, Regulation of cytochrome c expression in the aerobic respiratory yeast *Kluyveromyces lactis*, FEBS Lett. 360 (1995) 39–42.
- [22] M. González-Domínguez, C. Méndez-Carro, M.E. Cerdán, Isolation and characterization of the KIHEM1 gene in Kluyveromyces lactis, Yeast 13 (1997) 961–971.
- [23] N. Bonnefoy, M. Kermogant, P. Brivet-Chevillotte, G. Dujardin, Cloning by functional complementation, inactivation, of the *Schizosaccharomyces pombe* homologue of the *Saccharomyces cerevisiae* gene *ABC1*, Mol. Gen. Genet. 251 (1996) 204–210.